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1. INTRODUCTION

In this paper we consider the convergence properties of various iterative
methods for solving the linear system

Au = b, (1.1

where A is a given real nonsingular N X N matrix, b is a given real N X 1
column matrix, and u is an unknown N X 1 column matrix. We consider
methods derived from the linear stationary method of first degree defined by

D = Gu Lk, (1.2
where G is-a real N X N matrix such that I — G is nonsingular and
k=(—G)A%. (1.3)

The iterative method (1.2) is completely consistent with the system (1.1} in
the sense that the solution of (1.1) is the same as the solution of the related
equation

u=Gu-+k (1.

(see [1]). Moreover, if for some u® the sequence defined by (1.2) converges,
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through Grant DA-ARO(D)-31-124-G1050 and by the National Science Foundation
through Grant GP-8442 to The University of Texas at Austin. The author wishes to acknow-
ledge the helpful suggestions of David R. Kincaid in the preparation of this paper.
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it converges to the solution of (1.1). It is well known that the sequence
defined by (1.2) converges for all 4@ to a limit independent of u'® if and
only if S(G), the spectral radius of G, is less than unity. However, we do not
make this assumption.

The convergence properties of an iterative method can often be improved
by the use of a semi-iterative method based on the given method (see [2-5]).
To define a semi-iterative method one chooses constants o,  , k = 0, 1,..., 1,
n=20,1,2,..such that

n

Yagr=1 n=0,12,.., (1.5)
k=0
and one lets
o = 3 a, ), n=20,1,2,.. (1.6)
k=0

If u is the exact solution of (1.1), then # satisfies (1.4) and we have

v — it = Py (G)u® — u), oY)
where, in general,
Py(x) = 3 o . (1.8)
k=0

If the eigenvalues u of G are real and lie in the interval

a<p < B<l (1.9)

then the choice of the «,, ; given by

2x — B+ )
fa Yk:T,,( B—u ):P(x) (1.10)
= n,k Tn(Z) n s .

where

z=[2—B+ B — )

is optimal in the sense of minimizing the virtual spectral radius S(P,(G)).
Here, for any polynomial P,(x), we let

S(P,(G)) = max | P,(u). (1.11)

LTSRS

The T,(x) are the Chebyshev polynomials of degree n defined by

T,(») = cos(ncost x) = H{[x + V(2 — DI* + [x + V(&% — D]
(1.12)
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Motreover, we have

S(PAG)) = 2r72](1 + ¥"), (113
where
r=dy, —1={of[1 -+ v — D, (1.14)
&, = 2/[1 + V1 = )], (115
and
o= 1z (1.18)

By virtue of the relations
TO(x) = 19 Tl(x) =X,
Tyia(x) = 2xTp(%) — Tpy(),

one can derive the following three-term relation involving v+ »™) and
U(n—l):

(1.17)

1 2 B+«
(n+l) — — — : ()
v Zw"+1[/3—ocG ,8~—ocl}v

2w,y

(1= ) v g, (1.18)

where

wy =1, w2=1/(1————1—_*),
(1.19)
wna = 1/(1 "F) n=2,3..

We remark that w, — w, as n — 0. (See [5].)
We now compare the convergence of the semi-iterative method with that
of the method

unt = Py(G) u™ 2—_(/23—_}_——0516

1
-— ( I, £ 2
As a measure of the rapidity of the convergence we take the asymptotic
average rate of convergence defined by

—llog r.

2r”2]__ :

. 1, oo .
Ry = lim (_ ~log S(PAG)) = lim [— Slog {7
' {1.21)
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For the method (1.20) we have
R, = —log S(P,(G)) = —log o. (1.22)
It is easy to show that for o close to unity we have
Rei/V R, ~ V2. (1.23)

Thus, in a sense, there is an order-of-magnitude improvement in the conver-
gence rate of the semi-iterative method as compared with the method (1.20).
Evidently, (1.18) can be written in the form

U(n+1) = pin) _|_ dn+1(D(") _ v('n——l)) + en+1(Gv(n) + k — U(")), (124)

where
dn+1 = wpyy — 1, €py1 = 200%1/2([3 — a). (1-25)

The method (1.24) is said to be a nonstationary method of second degree.
One of the objects of the present paper is to consider stationary second-
degree methods based on (1.2) of the form

Yt = gy L Jy® — yr ) 4 e(Gu'™ + k—u™), n=12,...
(1.26)

Here ' is arbitrary and u® is determined by a special procedure such as
(1.20). It is shown that by a suitable choice of d and e one can achieve a
convergence rate nearly, though not quite, as good as that of the optimum
semi-iterative method. This result is known for the case of the Jacobi method;
the associated second-degree method is referred to as the “‘second-order
Richardson method”; it has been studied by Frankel [6], Riley [7], Golub [4],
Golub and Varga [5], and others. However, it does not seem to be generally
recognized that second-degree methods can be effectively applied to other
methods as well.

A second object of the present paper is to apply the above results to the
symmetric successive overrelaxation method (SSOR method)for linear systems
arising from the five-point discrete analog of the Dirichlet problem. We give a
formula for a relaxation factor whose use, together with semi-iteration or
the corresponding second-degree method, results in a reciprocal rate of
convergence of O(h~1/%) where A is the mesh size. For the ordinary successive
overrelaxation method with the optimum relaxation factor the reciprocal
rate of convergence is known to be O(h™') [8]. Thus the semi-iterative
method and the second-degree method based on the SSOR method are
better than the SOR method by an order-of-magnitude. This is true for
nonrectangular as well as rectangular regions. Moreover, an explicit proce-
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dure is given for the choice of the iteration parameters corresponding o
each value of the mesh size 4.

It appears that for most of the methods considered in the literature for
obtaining a reciprocal convergence rate less than O(a~1) either the improve-
ment in the convergence cannot be shown to hold for nonrectangular regions
or else an explicit procedure for choosing the iteration parameters is not
available, Thus the Peaceman-Rachford alternating-direction impiicit
method [9] can be shown to have a reciprocal convergence rate much less
than O(i1/%) for rectangular regions. However, while numerical evidence
(see, for instance, [10, 11}) indicates that the improvement holds for other
regions as well, no proof has as yet been given. For convex regions Guilinger
[12] has shown that the reciprocal rate of convergence can be as small as O(1)
provided certain assumptions are made as to the choice of the stariing
vector u(0.

Habetler and Wachspress [13] have proved the existence of a relaxation
factor whose use with the SSOR method and semi-iteration leads tc a
reciprocal convergence rate of O(h~*/%). However, in their analysis the deter-
mination of the relaxation factor involves the solution of a highly implicit
equation.

2. SECOND-DEGREE METHODS

Let i be the exact solution of (1.1} and iet
e = gy 3, (2.1)

where u®, 4™ ..., are determined by the second-degree method (1.26) with
u'® and »'V arbitrary. Since Gii + k — i = O we have

€t = ) L (et — -1y L e(Ge™ — €y, n=1,2,.. (2.2)
To study the convergence of (2.2) we observe that

W = [yle-D — Jny® n=12..,

where

. 0 I N i) !, (n}
r={(_y A+d—ei+ec) V= (ctns)-

We seek to choose d and e so as to minimize S(I”}. To do this we observe that
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for some vectors s and ¢ if and only if £ = As and
{AeG + (1 +-d— )] — dl}s = A%s. .3)
Unless both s and ¢ vanish we must have

det2f — MeG + (1 +d—o)+dD =0

and

NB—XNep+(1+d—e)+d=0 ca
for some eigenvalue p of G. Thus

S(I) = p = max (max(| At |, | A~ ), @.5)

where, for each eigenvalue g, , gy ..., iy of G, A% and A;~ are the roots of
QA withp = p; .

It follows from the analysis of Frankel [6] that if p varies over the range
o < p < B < 1, then the choice of 4 and e which minimizes p is given by*

d=d, —1, e=25/2— B+ (2.6)
where
& =20 +VI—-0)], o=1z=B—2-— @+l @7
The corresponding value of p is
p=V(&—1 =0/l + VI —~o)]=rr @28)
Thus with this choice of d and e, (1.26) becomes

(Gu(n) -+ k — u(n))
mz(ﬁ Y k.
(2.9)

A more precise assessment of the convergence rate can be made if we
specify the choice of u™. It seems reasonable to let 4™ be the same as for
the corresponding semi-iterative method. Thus from (1.20) we have

u® = [1/z(8 — 9)][2G — (B + )T + [2/2(8 — W]k.  (2.10)
Let us consider the sequence of polynomials defined by
QO(GI) =1, QI(GI) = G,
0511(G) = &G’ 0u(G) + (I — &) 0, a(G), n=1,

t Note added in proof. For details see D. Kincaid, Report CNA-23, Center for Numerical
Analysis, University of Texas, Austin, Tex., 1971.

A
U = ) - (dy — D — u V) 4 5 28y

) — B+

(2.11)
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where
G = {1/[2 — (B + 9B[2G — (B + I} 2.12)
Evidently by (2.9) and (2.10) we have
€™ = Q,(G") €©. (2.13)
Corresponding to the polynomial P,(x) defined by (1.10) let us define
P(y) = Pl — B+ o))y + (B + D)2} = Tz Tol2). (2.1%)
From (1.17) and (1.19) we have
PGy =1, PGy = G,
Pia(G) = wpuGPy(G) + (1 — wp) Poa(G@), 2= 1,2,.

{2.15)

f

which is the same as (2.11) except that &, is replaced by w,_, . Because of the
similarity between (2.11) and (2.15) it seems reasonable to expect that the
polynomials 0,(y) will be good approximations to the Z,(y).
Let us now determine S(Q,(G")). Golub [4] has shown that
max | On(3)] = Oul0) (2.16)

—0 LYKo

(see also Young and Kincaid [14]). It is easy to verify that

0uo) = o= [1+ (2 a —n)s @17

hence we have

5000 = 2 14 (5 1) oo < e 10 (0]
(2.18)

It can be shown that 5(0.(G")) = S(P.(G)) (see [5, 14]). On the other hand,
the asymptotic average rate of convergence Rgp is given by

. 1 ( 1 —ry |
= —= /2 = —zlogr (2.19)
o = i [~ g 1 0 (155 =~ rosr a9
as for the semi-iterative method. Thus the second-degree method, iike the
semi-iterative method, is better than (1.20) by an order-of-magnitude.
As an example, let us consider the case where « = —0.95, § = 0.95. For
(1.20), the semi-iterative method, and the second-degree method we seek the
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smallest integer # for which the spectral radius associated with it is less than
10-%. Thus for (1.20) we solve

where

o =1z = (B — a2 — (B + )] = 0.95,
and obtain
ng = 269.
Evidently, by (2.7) and (2.8) we have
@y = 1524, r=d,—1=0.524
For the semi-iterative method, we solve

2rm2)(1 + ) = 10-8

obtaining
Rgy = 45,

For the second-degree method we solve

pri2 [1 +n (%%)] = 108,

obtaining
HsD = 51

which is only slightly larger than the corresponding number for the semi-
iterative method. Both the semi-iterative method and the second-degree
method are better than the basic method by a factor greater than five. This
factor of improvement increases as ¢ increases.

3. THE SYMMETRIC SUCCESSIVE OVERRELAXATION METHOD (SSOR METHOD)

We now consider the application of the above results to the case of the
SSOR method. For simplicity we assume that 4 is a positive definite matrix
with unit diagonal elements and we let

A=I—L—U, (3.1

where L and U are strictly lower and strictly upper triangular matrices,
respectively. Since A is symmetric we have

I7 = U. (3.2)
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The SSOR method 1s defined by

dD = Py (2 W) — wU)V I — wLy b,

o
(o)
[R%]

R

where
S, =1— (2 — ) — alUy (I — wly 4. {

(%)

4)

Sheidon [15] considered the use of semi-iterative methods to accelerate the
convergence of the SSOR method. Subsequent work was done by Habetier
and Wachspress [13] and by Ehrlich [16,17]. Habetler and Wachspress
proved the existence of a unique value of w in the range 0 < w < 2 which
minimizes S(%,). However, as mentioned earlier, the determination of this
value of « involves the solution of a highly implicit equation. For our
purposes it is sufficient to give a “good™ value of w for which a bound on
S(,)) can be found for a special case. We prove

TaeEOREM 3.1.7 Let A be a positive definite marrix with unit diagonal
elements such that i << 1 and

S(LUY < 1/4, 3.5

where L and U are, respectively, a strictly lower and a strictly upper iriangular
marrix such that (3.1) holds. Then

S(%) <L — I — @21+ V(T —Di2], (3.6)

where
g=SL+U) (3.7)

and
wy = 2[1 -+ 201 — D)} (3.8

Proof. For 0 < w <2 we have by (3.4)

&, = I — R(w)™, )
where
Rw) = [1fw(2 — )] A — wl){ — wU). 310

Y

If Ais an eigenvalue of R(w) and if v is an associated eigenvector, then we have

A= (1 — wf + omu2 — w)(l — &), EREY
where
E= (e, (L+Up), 7= LU (3.12)

t Note added in proof. In more recent work it is shown that (3.5) impiies that 2 < 1;
moreover, i can be replaced in (3.8) and (3.6) by 8, the largest eigenvalue of I + U.

640/5/2-3
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Here we define the inner product (u, v) of two vectors by
N
(,0) = Y dw,;.
i=1

We assume that (¢, v) = 1. Since y < || LU || = S(LU) < 1/4 and since

1l —wéf+ o=@ (J—ol)l—olpw) = (I — olp,  —wl) =0,

(3.13)
it follows that
A< (1~ wf + j0?)/w@2 — w)(l — §). (3.19)
Moreover,
dA . 2w
& = (1 — wf + 1o)/w2 — w)(1 — &) = To(l — &7 > 0.

Since ¢ <||L + Ul = S + U) = f, we have
A< o2 — o)]l(1 — wp + o?)/(1 — @) (3.15)

The derivative of the right member of the above equation with respect to w
vanishes when

Wi — 1) = 2w — 1). (3.16)

The root of (3.16) in the interval 0 < w <C 2 is clearly w, as given by (3.8).
From (3.16) and (3.15) we obtain

r<(1- -‘1’5—’1) Jon(l — . (.17)

The result (3.6) follows from (3.9) and (3.8).

For any & > 0 let £, be a set of points (ik, jk), where i and j are integers.
Two points (ik, ji) and (i'h, j'h) are adjacent if | i —i'| 4 |j—j"| = 1. Let
R, be any finite subset of £2, and let S, be the set of all points of £2, which
are not in R, but are adjacent to points of R, . We define the discrete
analog of the Dirichlet problem as that of finding a function u(x,y)
defined on R, 4 S;, which assumes prescribed values on S and satisfies on
R, the difference equation

u(x, y) — du(x + h,y) — du(x — h,y) — 3¢, y -+ h) — Ju(x,y — h) = 0.
(3.18)

If we label the points of R, in their “natural order” with (x, y) following
(', yYif y >y orif y =y and x > x', then for the associated matrix 4
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we have (3.5). For each of the matrices L and U has at most two nonzero
5 Ucl <}and

elements, namely 1/4, in any row. Hence || L ||.. << Uy

SLU) <LVl <[ L[| Uln < 4. (3.19)

Here for any N X N matrix 4 we let

Suppose that the points of R, and S;, belong to the unit square 0 < x < 1,
0 <y < 1. It is easy to show that if S, is the set of ali points of £2, on the
boundary of the square then

P=p,=coswh {3.20}
and in general

fi < cos mh. (3.21)

Since &, has real nonnegative cigenvalues [15] we can apply the semi-
iterative method or the second-degree method using

1—\/1;“3 l—sinw?f2

a=20,8= = = 1 — ok + O3 {3.22}
— .

1+ \/_1_2_“3 14 sin ——

We let
o, = 2[[1 + V21 — gl = 2/il + 2 sin(wh/j2)]. (3.23;
Evidentiy
8 1 — sin %’l
S(P(%,)) = T E T L ah T 1 —2nh - O (3.24)
1 4 3sin ——
2
and
R, = 2nh -+ O(h%. (3.25)

Consequently, by (1.23) it follows that
Rgp ~ 2 \/mh.
Similarly, for the second-degree method we have
Rsp ~ 2 V'7h.

Thus the reciprocal rate of convergence for the semi-iterative method and
for the second-degree method is O(A1/%).
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